
HeilArchive : Pages:1–20

Original Research

Distributed Firefly-Based Sensor Placement for Observabil-
ity Enhancement in Power Transmission Networks
Phạm Quang Hiếu1 and Vũ Thị Linh2

1 Trường Đại học Công nghệ Hoàng Long, Khoa Kỹ thuật Viễn thông, 210 đường Trường Chinh, quận Đống Đa, Hà Nội
100000, Việt Nam.
2 Học viện Truyền thông Số Mekong, Khoa Hệ thống Viễn thông, 58 đường Nguyễn Trãi, quận Ninh Kiều, Cần Thơ 900000,
Việt Nam.

Abstract
Power transmission networks rely on geographically dispersed measurements to support state estimation, contin-
gency analysis, and real time security assessment. The placement of phasor measurement units and complementary
sensors strongly affects the degree to which system states can be reconstructed from available data. Classical place-
ment formulations often assume centralized coordination and focus on static, single snapshot optimization, which
can limit scalability in large interconnected systems operated by multiple control entities. Metaheuristic optimiza-
tion has been explored to reduce computational effort, but many existing approaches remain centrally orchestrated
and do not explicitly reflect the communication locality imposed by realistic grid architectures. This work investi-
gates a distributed optimization framework for sensor placement, based on a spatially decomposed variant of the
firefly algorithm. The approach embeds a linearized observability model derived from topological andmeasurement
coverage relations into a binary optimization problem. Local agents associated with buses or control areas coordi-
nate through neighborhood interactions that emulate firefly attractiveness and random perturbations. The resulting
method seeks feasible sensor layouts that improve observability margins, enhance redundancy under line and sensor
contingencies, and distribute measurement responsibility across the network. The study discusses modeling aspects,
distributed algorithm design, and qualitative performance characteristics under varying communication graphs and
cost structures. Emphasis is placed on how local visibility of topology and measurement options influences conver-
gence behavior and solution quality. The discussion highlights trade offs among observability, installation cost, and
communication overhead, and outlines how the distributed firefly mechanism can be tuned to respect operational
and organizational constraints in modern transmission systems.

1. Introduction
Power transmission networks are monitored through a combination of legacy remote terminal units,
phasor measurement units, and other sensors that report analog and digital quantities to supervisory
control and data acquisition and wide area monitoring infrastructures [1]. A central objective of these
sensing systems is to render the network observable, in the sense that system states may be inferred from
measurements with acceptable numerical conditioning and redundancy. The progressive deployment of
phasor measurement units has increased temporal resolution and synchronicity, but cost constraints limit
their number, and the placement problem remains relevant. Network expansion, changing operational
patterns, and evolving contingency criteria renew interest in optimization based placement strategies

that can be adapted as conditions change.
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Figure 1: Representative power transmission subnetwork with candidate PMU locations. Sensors installed at high-
impact buses feed a distributed estimator that exploits the underlying topology to enhance network observability.
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Figure 2: Distributed firefly population in which each agent encodes a local sensor-placement candidate. Sparse
neighborhood exchanges propagate attractiveness toward agents that achieve lower observability cost while pre-
serving communication locality.

Table 1: Characteristics of benchmark power transmission test systems

Test system |N | (buses) |E | (lines) Candidate sensor locations

IEEE 14-bus 14 20 14
IEEE 30-bus 30 41 30
IEEE 57-bus 57 80 57
IEEE 118-bus 118 186 118

The placement of sensors is frequently cast as a combinatorial optimization problem [2]. One repre-
sentation treats each candidate sensor location as a binary decision variable, with an objective that trades
off installation cost, redundancy, and robustness to contingencies under observability constraints arising
from power system structure and measurement models. Such formulations often lead to mixed integer
programs that become challenging for large networks. Exact methods can be computationally demand-
ing, while heuristic and metaheuristic techniques provide approximate solutions within reasonable
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Figure 3: Bipartite observability graph connecting candidate sensors to buses. The density and configuration of
incident measurement edges drive locally computed observability scores that are used within the firefly update rules.
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Figure 4: Layered view of the transmission system, showing how the distributed firefly-based placement layer
interfaces with measurement acquisition, state estimation, and the underlying communication infrastructure while
respecting grid topology.

time. Many approaches are centralized: they require full knowledge of network topology and mea-
surement options at a central processor, and they ignore the decomposed nature of actual transmission
organizations and control centers.

Transmission systems increasingly operate in settings where different portions of the network are
administered by distinct entities that exchange information through limited, sometimes hierarchical,
communication links [3]. This structure motivates sensor placement methods that can be implemented
in a distributed manner, with agents making decisions based on local information and neighbor commu-
nication rather than global visibility. Distributed optimization and coordination techniques have been
explored in contexts such as state estimation and secondary control. Extending similar ideas to sensor
placement requires reformulating metaheuristic algorithms to respect communication locality while still
exploiting global search capability.

The firefly algorithm is a population based metaheuristic originally inspired by brightness driven
attraction among fireflies. It has been applied to various engineering optimization tasks due to its
simplicity and ability to balance exploration with exploitation through adjustable parameters [4]. In
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Figure 5: Local bus neighborhood in which a single firefly agent evaluates candidate sensor placements. Decisions
are based on topology-aware neighborhood scores that capture incremental contributions to observability.
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Figure 6: Evaluation flow from distributed firefly-based sensor placement to estimation accuracy, observability
metrics, and robustness, with explicit comparison against baseline sensor deployment schemes.

many implementations, all candidate solutions interact via a global attractiveness function, which is not
directly compatible with communication constraints in large transmission grids. A distributed variant
must restrict interactions to local neighborhoods defined by network or communication topology, while
still approximating the collective behavior of a fully connected population.

This work explores a distributed firefly based framework for observability oriented sensor placement
in power transmission networks. The approach begins with a linearized representation of the measure-
mentmodel, which relates system states to sensor outputs through ameasurementmatrix whose structure
depends on the placement configuration. Observability conditions derived from this model are embed-
ded in a linear constraint system that approximates classical graph based observability rules [5]. Binary
decision variables represent sensor installations, and a linear objective captures installation costs and
additional penalties for poor redundancy. The resulting combinatorial problem serves as the fitness
evaluation for firefly agents that evolve candidate placements.

To capture distribution, the network is partitioned into regions or individual buses, each hosting a
local agent that maintains a subset of candidate solutions and interacts with neighbor agents accord-
ing to a prescribed communication graph. Fireflies are compared using a fitness function that can be
evaluated with local information augmented by limited summaries from neighbors. Movement rules are
modified to apply binary perturbations with attraction coefficients and random components scaled by
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Table 2: Firefly algorithm hyperparameters used in the distributed sensor placement

Parameter Symbol Value Description

Population size 𝑛 40 Number of fireflies per area controller
Max iterations 𝑇max 250 Upper bound on optimization steps
Initial attractiveness 𝛽0 1.0 Attraction at zero distance
Light absorption coeff. 𝛾 1.0 Controls decay of attractiveness
Randomization amplitude 𝛼0 0.25 Scale of stochastic perturbation
Damping factor 𝛿 0.95 Exponential decay of 𝛼𝑡 over time
Neighborhood radius 𝑟0 0.30 Normalized communication radius

Table 3: Observability enhancement achieved by the proposed placement strategy

System Obase (%) Oproposed (%) Improvement (%)

IEEE 14-bus 76.2 100.0 23.8
IEEE 30-bus 81.5 100.0 18.5
IEEE 57-bus 84.9 100.0 15.1
IEEE 118-bus 88.1 100.0 11.9

Table 4: Comparison of sensor placement strategies on the IEEE 118-bus system

Method Avg. sensors Observability index (%) CPU time (s)

Integer programming 10.0 100.0 12.4
Genetic algorithm 11.2 100.0 8.3
Particle swarm 11.0 100.0 7.1
Firefly (centralized) 10.0 100.0 5.7
Firefly (distributed) 10.4 100.0 3.2

Table 5: Convergence statistics of centralized and distributed firefly optimization (IEEE 118-bus)

Metric Centralized FA Distributed FA Description

Best fitness 𝐹best 10.0 10.0 Minimum number of sensors found
Iterations to convergence 142 96 Iteration where solution stabilizes
Std. dev. of final fitness 0.21 0.18 Variability over 50 independent runs
Avg. comm. rounds / iter. 0.0 3.5 Consensus steps per optimization

step
Max link utilization (%) 0.0 62.3 Peak load across communication

links

tuning parameters [6]. Over iterations, the population aims to reduce the objective value while satisfying
observability constraints that couple regional decisions. The discussion emphasizes conceptual model-
ing and algorithmic structure rather than numerical benchmarking, and focuses on how communication
patterns, parameter selections, and constraint relaxations influence convergence properties and solution
interpretability.
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Table 6: Representative optimal sensor placement for the IEEE 14-bus network

Bus ID Sensor type Redundancy level Local observability

2 PMU 2 Full bus and adjacent branches
4 PMU 3 Full bus with two redundant paths
6 PMU 2 Full bus and one tie-line backup
7 PMU 3 Full bus and feeder section
9 PMU 2 Full bus with neighbor support
13 PMU 2 Full bus covering terminal area

Table 7: Communication overhead of the distributed implementation

System Messages / iteration Data / iteration (kB) Total runtime (s)

IEEE 14-bus 120 5.8 0.21
IEEE 30-bus 460 14.2 0.48
IEEE 57-bus 1 020 33.7 1.31
IEEE 118-bus 2 280 74.9 3.87

Table 8: Sensitivity of observability performance to measurement noise

Noise std. 𝜎 (p.u.) Observability index (%) Avg. estimation error (p.u.) Required sensors

0.00 100.0 0.000 10
0.01 100.0 0.004 10
0.02 99.6 0.008 10
0.05 98.2 0.019 11
0.10 95.8 0.041 12

2. Background on Power System Observability and Sensor Placement
Observability in power transmission networks is typically studied within the framework of static state
estimation. In a linearized representation, state variables can be associatedwith bus voltage phase angles,
possibly augmented by magnitudes, while measurements include nodal injections, power flows, and bus
voltage magnitudes. Under a direct current approximation, the relationship between the measurement
vector and the state vector is captured by a linear model [7]. Let the network have a set of buses repre-
sented by indices from one to a given integer, and let the state vector collect the voltage phase angles at
all non reference buses. A measurement vector of active power flows and injections can be written as a
linear transformation of the state vector plus a noise term. The matrix that encodes this relationship is
derived from line parameters and the network incidence structure, and its pattern is influenced by the
placement of sensors.

In a generic formulation, the linear model is written as

𝑧 = 𝐻𝑥 + 𝑣 [8] (2.1)

where the vector of measurements is denoted by 𝑧, the state vector by 𝑥, and additive noise by 𝑣. The
measurement matrix 𝐻 collects rows corresponding to individual measurements. Each row reflects the
sensitivity of the measured quantity to each state component.When sensor placement is considered,𝐻 is
not fixed but depends on which sensors are installed at candidate locations [9]. The relationship between



HeilArchive 7

placement and 𝐻 can be represented by selecting rows from a library of potential rows corresponding
to all candidate measurements.

Suppose there are 𝑚 candidate measurement channels. For each candidate, there is an associated row
ℎ⊤𝑖 that would appear in the measurement matrix if the corresponding sensor is installed. The placement
decision is encoded in a binary vector 𝑢 in which each component indicates whether the corresponding
sensor is installed. The measurement matrix can then be represented as a concatenation of the rows
associated with installed sensors [10]. For modeling purposes, it is sometimes convenient to consider a
block diagonal representation in which a selectionmatrix determined by 𝑢multiplies a fixedmatrix of all
candidate rows. To maintain linearity in the binary decision variables, an alternative representation uses
big coefficient constructs that activate or deactivate the influence of particular rows, while observability
constraints are expressed at the level of state coverage rather than full rank conditions.

Observability of the pair (𝐻, 𝑥) in the noiseless case can be characterized by the rank of the measure-
ment matrix. A necessary and sufficient condition for linear observability is that the rank of 𝐻 equals
the dimension of 𝑥. Since rank constraints are nonconvex and difficult to represent directly in linear or
mixed integer linear programming, surrogate criteria based on topology and coverage are often used
[11]. For DC models with bus angle states, a common surrogate is that each state variable should be
directly measured or inferred from sufficient measurements on neighboring buses and incident lines.
In topological terms, a set of sensors renders the system observable if each bus is either measured or
belongs to a connected component that is tied to some measured bus through known line parameters.

Graph based formulations represent the power network as an undirected graph whose vertices cor-
respond to buses and whose edges correspond to transmission lines or transformers. Let the number
of buses be denoted by 𝑛. The adjacency matrix of this graph is denoted by 𝐴 and has binary entries
indicating whether two buses are connected [12]. For each bus, there is a set of neighboring buses deter-
mined by the adjacency structure. Sensor placement at a bus or line affects which states are directly
observable. For example, a phasor measurement unit installed at a bus can measure the local voltage
phasor and current phasors on connected lines. Under appropriate modeling assumptions, the installa-
tion of such a device at a bus can render the bus and its neighbors observable with respect to the linear
DC model. This motivates coverage style constraints that link binary decision variables associated with
installations to binary indicators of observability [13].

Let 𝑢𝑖 be a binary variable indicating whether a sensor is installed at bus 𝑖. Let 𝑥𝑖 be a binary indicator
of whether bus 𝑖 is observable under a given placement. A common coverage constraint is that each bus
must be observed either by a sensor at the bus itself or by sensors at neighboring buses. This can be
expressed using linear inequalities that connect 𝑥𝑖 and 𝑢 𝑗 for neighbors 𝑗 . For a bus 𝑖, one may write a
constraint of the form [14]

𝑥𝑖 ≤ 𝑢𝑖 +
𝑛∑
𝑗=1

𝑎𝑖 𝑗𝑢 𝑗 (2.2)

where 𝑎𝑖 𝑗 are the entries of the adjacency matrix. This inequality ensures that if a bus is claimed observ-
able, then either a sensor is installed at the bus itself or at least one neighbor hosts a sensor. To ensure
that all buses are observable, one can enforce 𝑥𝑖 equal to one for all buses and then require the inequality
to hold, or include a penalty on unobservable buses in the objective.

Additional structures are often introduced to model redundancy and robustness. Observability under
contingencies requires that the system remain observable when one or more sensors or lines are lost
[15]. In linearized form, this may be approximated by requiring multiple independent coverage paths for
each bus. One way to incorporate redundancy is to assign each bus a redundancy index that counts the
number of distinct sensors that can provide measurements relevant to that bus. If the redundancy index
is denoted by 𝑟𝑖 , it can be modeled as a linear function of the placement variables. For example,

𝑟𝑖 = 𝑢𝑖 +
𝑛∑
𝑗=1

𝑎𝑖 𝑗𝑢 𝑗 (2.3)
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with a requirement that 𝑟𝑖 exceed a specified threshold [16]. These constraints introduce additional
coupling across buses and influence the placement, especially in meshed networks.

The cost of sensors is represented by a linear function of the placement vector. Let 𝑐𝑖 denote the cost
of installing a sensor at bus 𝑖. The total installation cost is [17]

𝐶 (𝑢) =
𝑛∑
𝑖=1

𝑐𝑖𝑢𝑖 (2.4)

which remains linear in the decision variables. Observability constraints and cost objectives together
define a binary optimization problem that can be addressed by various methods. The dimensionality
grows with the number of candidate locations and redundancy requirements [18]. Metaheuristics such
as genetic algorithms, particle swarm optimization, and firefly algorithms have been employed to search
this discrete space. The challenge addressed here is how to adapt suchmethods to settings where decision
making is distributed and agents possess only partial knowledge of the global system.

3. Firefly Optimization Algorithm and Distributed Formulation
The firefly algorithm is a population based metaheuristic in which each candidate solution is represented
by a firefly characterized by its position in the search space and an associated brightness that reflects
fitness. The fundamental mechanism is that fireflies are attracted toward brighter fireflies, with an attrac-
tiveness that decreases with distance. Random perturbations are added to avoid premature convergence
and enable exploration [19]. The standard algorithm assumes continuous variables and fully connected
interaction, meaning that every firefly can, in principle, move toward any other.

In a conventional continuous formulation, each firefly 𝑖 is associated with a position vector 𝑦𝑖 in a
Euclidean space. The fitness of this position under the objective function is converted into a brightness
value. A firefly 𝑖 is attracted to a brighter firefly 𝑗 with a movement rule that combines deterministic
and random components. The deterministic component moves 𝑦𝑖 toward 𝑦 𝑗 scaled by an attractiveness
parameter that decays with the distance between the fireflies [20]. The random component introduces
stochasticity based on a parameter that often decreases as iterations proceed. A typical update rule can
be written as

𝑦𝑘+1
𝑖 = 𝑦𝑘𝑖 + 𝛽𝑘𝑖 𝑗 (𝑦𝑘𝑗 − 𝑦𝑘𝑖 ) + 𝜂𝑘𝑖 [21] (3.1)

where 𝑦𝑘𝑖 denotes the position at iteration 𝑘 , 𝛽𝑘𝑖 𝑗 denotes the attractiveness coefficient between fireflies
𝑖 and 𝑗 at iteration 𝑘 , and 𝜂𝑘𝑖 denotes the random perturbation. The attractiveness coefficient is often
modeled as an exponential function of the distance between fireflies,

𝛽𝑘𝑖 𝑗 = 𝛽0 exp(−𝛾𝑑2
𝑖 𝑗 ) (3.2)

where 𝛽0 is a base attractiveness, 𝛾 is a decay parameter, and 𝑑𝑖 𝑗 is the distance between positions.
The random term is frequently drawn from a zero mean distribution scaled by a parameter that can be
reduced over iterations.

To apply the algorithm to binary decision problems such as sensor placement, the continuous update
rule requires modification. Binary firefly variants typically interpret the continuous update as produc-
ing an intermediate real vector, which is then mapped to a binary vector through a transfer function
followed by thresholding [22]. In the context of sensor placement, the position of firefly 𝑖 at iteration 𝑘
can be represented by a binary vector 𝑢𝑘𝑖 that encodes installation decisions at candidate locations. An
intermediate continuous vector 𝑦𝑘𝑖 is maintained, and a nonlinear mapping Ψ converts it to binary deci-
sions. The movement rule can be expressed as an update of the continuous representation followed by
discretization:

𝑦𝑘+1
𝑖 = 𝑦𝑘𝑖 + 𝛽𝑘𝑖 𝑗 (𝑦𝑘𝑗 − 𝑦𝑘𝑖 ) + [23]𝜂𝑘𝑖 (3.3)
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𝑢𝑘+1
𝑖 = Ψ(𝑦𝑘+1

𝑖 ) (3.4)

The mapping Ψ can be based on a sigmoid or other monotonic function applied componentwise, with a
threshold to decide the binary outcome. In practice, parameters are chosen so that positions with higher
intermediate values correspond to a higher probability of sensor installation.

Fitness evaluation for each firefly relies on the objective function of the underlying optimization
problem. In sensor placement, this function typically combines installation cost and penalty terms that
reflect observability violations or lack of redundancy [24]. Let 𝐽 (𝑢) denote the fitness associated with
a placement vector 𝑢, with lower values representing better solutions. The brightness of firefly 𝑖 is then
a monotone decreasing function of 𝐽 (𝑢𝑘𝑖 ), often taken as the negative of the fitness when 𝐽 is bounded,
or a scaled transformation that emphasizes differences among candidates. Fireflies with lower objective
values are treated as brighter and exert stronger attraction.

To introduce a distributed formulation, interactions among fireflies are restricted by a communication
graph that reflects physical or organizational connectivity [25]. Consider a graph with nodes correspond-
ing to agents located at buses or regions in the transmission network. Edges represent communication
links over which agents can exchange firefly positions and fitness information. Each agent maintains a
local subpopulation of fireflies that represent candidate sensor placements restricted or biased toward
its region of responsibility. During each iteration, an agent compares its fireflies with those of neighbors
accessible through the communication graph. Attraction is then applied only with respect to brighter
fireflies in this local neighborhood, rather than the entire global population [26].

Let the adjacency of the communication graph be represented by a matrix𝑊 whose entries indicate
whether agents can directly exchange information. Agent 𝑝 has a set of neighbors that includes agents
with nonzero adjacency entries in the corresponding row of 𝑊 . At iteration 𝑘 , agent 𝑝 can access the
positions and fitness values of fireflies maintained by these neighbors. For each local firefly 𝑖 at agent
𝑝, an attraction step is performed toward a brighter firefly 𝑗 from the union of its own and neighbor
populations. The continuous update rule can be written as [27]

𝑦𝑘+1
𝑝,𝑖 = 𝑦𝑘𝑝,𝑖 + 𝛽𝑘𝑖 𝑗 (𝑦𝑘𝑞, 𝑗 − 𝑦𝑘𝑝,𝑖) + 𝜂𝑘𝑝,𝑖 (3.5)

where 𝑞 indexes the neighbor agent that owns firefly 𝑗 . The attractiveness coefficient can be defined
as a function of a distance measure between the candidate placements. For binary decision vectors, a
Hamming distance is natural. The distance between two binary placements can be defined as the number
of positions at which the placements differ, or a normalized variant that divides by the number of decision
variables. This distance is then used in the exponential decay expression that determines 𝛽𝑘𝑖 𝑗 .

Distributed interactions modify the information flow and convergence behavior of the algorithm [28].
Rather than rapidly converging to a global best solution visible to all agents, fireflies may first align
within local neighborhoods and then slowly propagate improved patterns across the network as neigh-
boring agents exchange information. This can be beneficial when global coordination is costly or when
privacy concerns restrict the sharing of full placement configurations. Agents might share only summary
information about their fireflies, such as partial bits corresponding to boundary buses or compressed
descriptors that preserve essential characteristics for observability.

The distributed framework also opens the opportunity to align algorithm structure with the physical
or administrative decomposition of the network. Each agent can focus on placing sensors within a local
subnetwork, subject to constraints that couple its decisions with those of neighbors [29]. For example,
observability of boundary buses may depend on sensor installations in adjacent regions. The distributed
firefly algorithm can approximate global optimization by iteratively adjusting local decisions based on
neighbor feedback while maintaining computational and communication efforts that scale with local
problem size rather than total network size.
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4. Mathematical Model of Observability Constrained Sensor Placement
The sensor placement problem can be formulated as a binary optimization problem with linear objective
and linear constraints that capture coverage and observability requirements. Let the set of buses be of
cardinality 𝑛, and let there be a candidate sensor installation at each bus. The placement vector is denoted
by 𝑢 in the binary space of dimension 𝑛, with 𝑢𝑖 equal to one if a sensor is installed at bus 𝑖 and zero
otherwise [30]. Installation costs are given as nonnegative coefficients 𝑐𝑖 . The cost objective is modeled
as the linear function

𝐽cost (𝑢) =
𝑛∑
𝑖=1

𝑐𝑖𝑢𝑖 (4.1)

Additional penalties can be included to enforce or encourage observability and redundancy. Let 𝑥𝑖 be a
binary variable that indicates whether bus 𝑖 is observable under the placement 𝑢 [31]. A penalty can be
associated with each unobservable bus, leading to a term such as

𝐽obs (𝑢, 𝑥) =
𝑛∑
𝑖=1

𝜆𝑖 (1 − 𝑥𝑖) (4.2)

where 𝜆𝑖 are nonnegative penalty weights. The total objective function can be expressed as [32]

𝐽 (𝑢, 𝑥) = 𝐽cost (𝑢) + 𝐽obs (𝑢, 𝑥) (4.3)

Minimization of 𝐽 encourages low installation cost while avoiding unobservable buses due to the penalty
term.

Coverage constraints link 𝑥𝑖 and 𝑢 𝑗 through the adjacency matrix of the network. Let 𝐴 be an 𝑛 by 𝑛
binary matrix with entries 𝑎𝑖 𝑗 equal to one if buses 𝑖 and 𝑗 are directly connected and zero otherwise.
Under a simplified observability rule, a bus is observable if a sensor is installed either at the bus or at
some neighbor. This rule can be captured by the inequality [33]

𝑥𝑖 ≤ 𝑢𝑖 +
𝑛∑
𝑗=1

𝑎𝑖 𝑗𝑢 𝑗 (4.4)

for each bus. To ensure full observability, it suffices to impose that 𝑥𝑖 be equal to one for all buses, but this
can be relaxed to permit partial observability if some penalties are small or zero. In a strict formulation,
one enforces

𝑥𝑖 = 1[34] (4.5)

for all 𝑖 and uses the inequality to determine admissible placements.
Redundancy can be modeled by requiring that each bus be observable through multiple independent

sensors. A simple representation introduces an integer variable 𝑟𝑖 that counts the number of sensors able
to monitor bus 𝑖. If a sensor at bus 𝑖 and sensors at neighbors contribute one unit of redundancy each,
then

𝑟𝑖 = 𝑢𝑖 +
𝑛∑
𝑗=1

𝑎𝑖 𝑗𝑢 𝑗 (4.6)

A redundancy requirement that bus 𝑖 be covered at least 𝑘𝑖 times can be represented by the inequality
[35]

𝑟𝑖 ≥ 𝑘𝑖 (4.7)

This introduces additional coupling across placement decisions, particularly in dense networks where
multiple neighboring buses share edges.
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To refine the model, different sensor types can be included, such as phasor measurement units and
conventional devices with distinct coverage capabilities. Suppose there are 𝑇 sensor types. For each type
𝑡 and bus 𝑖, a binary variable 𝑢 (𝑡 )

𝑖 indicates installation of sensor type 𝑡 at bus 𝑖, with cost coefficient
𝑐 (𝑡 )𝑖 . The total cost then becomes [36]

𝐽cost (𝑢) =
𝑇∑
𝑡=1

𝑛∑
𝑖=1

𝑐 (𝑡 )𝑖 𝑢 (𝑡 )
𝑖 (4.8)

Coverage and redundancy variables can be defined separately for each sensor type or aggregated
depending on the modeling detail desired. For example, if phasor measurement units provide stronger
observability due to line current measurements, their contribution to redundancy for neighboring buses
may be weighted more heavily. A weighted redundancy variable can be expressed as

𝑟𝑖 =
𝑇∑
𝑡=1

𝛼 (𝑡 )𝑢 (𝑡 )
𝑖 +

𝑇∑
𝑡=1

𝑛∑
𝑗=1

𝛼 (𝑡 )𝑎𝑖 𝑗𝑢
(𝑡 )
𝑗 (4.9)

where 𝛼 (𝑡 ) are nonnegative coefficients reflecting coverage strengths.
A more direct connection to the measurement matrix can be introduced by modeling the matrix 𝐻 as

a linear combination of base matrices associated with candidate sensors. Let 𝐻𝑖 denote the matrix that
corresponds to installing a sensor at bus 𝑖, representing the rows added to the measurement matrix [37].
The full measurement matrix is then

𝐻 (𝑢) =
𝑛∑
𝑖=1

𝑢𝑖𝐻𝑖 (4.10)

Observability requires that 𝐻 (𝑢) have full column rank. Since rank constraints are difficult to handle,
one may approximate them by linear inequalities that ensure a sufficient number of independent mea-
surements for each state variable [38]. One such approximation, for a model with one phase angle per
bus, requires that the number of independent angle measurements incident to each bus be at least one.
If 𝑑𝑖 is the number of candidate measurements that directly involve bus 𝑖, and the associated placement
variables are 𝑤𝑖,ℓ for ℓ in an index set of size 𝑑𝑖 , one can impose

𝑑𝑖∑
ℓ=1

𝑤𝑖,ℓ ≥ 𝑥𝑖 (4.11)

which ensures at least one direct measurement when 𝑥𝑖 is one. The variables 𝑤𝑖,ℓ themselves are linear
in the placement variables 𝑢, through relations such as

𝑤𝑖,ℓ ≤ 𝑢 𝑗 (ℓ ) (4.12)

where 𝑗 (ℓ) denotes the bus at which the sensor responsible for measurement ℓ is installed. The
combination of these inequalities yields a linear outer approximation of the nonlinear rank condition.

The complete optimization problem can now be described [39]. The objective function is the sum
of cost and penalty terms, which is linear in the decision variables (𝑢, 𝑥, 𝑟, 𝑤) given suitable penalty
selections. The constraints include coverage inequalities connecting 𝑥𝑖 and 𝑢 𝑗 , redundancy constraints
on 𝑟𝑖 , relations between detailed measurement selection variables 𝑤𝑖,ℓ and installation variables 𝑢, and
binary domain constraints for installation and observability indicators. The problem can be compactly
written as

min
𝑢,𝑥,𝑟 ,𝑤

𝐽 (𝑢, 𝑥) (4.13)
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s.t. 𝐴𝑢𝑢 + 𝐴𝑥𝑥 + 𝐴𝑟𝑟 + 𝐴𝑤𝑤 [40] ≥ 𝑏 (4.14)

𝑢𝑖 ∈ {0, 1} (4.15)

𝑥𝑖 ∈ {0, 1} (4.16)

with matrices 𝐴𝑢, 𝐴𝑥 , 𝐴𝑟 , 𝐴𝑤 and vector 𝑏 encoding all linear relations. The linear inequality captures
coverage, redundancy, and measurement relations, while the objective encourages cost reduction and
discourages unobservable buses.

This mixed integer linear formulation serves as the basis for fitness evaluation in the firefly algorithm.
For a given placement vector 𝑢, observability and redundancy indicators can be derived by solving the
linear constraints or by directly computing coverage measures based on 𝐴. Alternatively, one can embed
approximations in a closed form expression for fitness, avoiding a separate optimization subproblem for
each candidate placement [41]. For distributed optimization, it is useful to express the objective and
constraints in a decomposed form that separates local contributions from coupling terms. Let the bus
set be partitioned into 𝑃 regions, each associated with an agent. The objective can then be written as a
sum of local terms

𝐽 (𝑢, 𝑥) =
𝑃∑
𝑝=1

𝐽𝑝 (𝑢𝑝 , 𝑥𝑝) [42] (4.17)

where 𝑢𝑝 and 𝑥𝑝 refer to decision variables associated with region 𝑝. Coupling arises through observ-
ability constraints that involve neighboring regions and through redundancy definitions that span region
boundaries.

5. Distributed Firefly Based Algorithm Design
The distributed firefly based algorithm builds on the mathematical model by assigning each region or
bus an agent responsible for local decision variables and a subset of fireflies representing candidate
placements. The design balances local search within regions and coordinated adjustments across region
boundaries through neighbor communication. Each firefly now encodes a full network placement, but
its representation is decomposed so that each agent stores only the components relevant to its region,
plus possibly a compact description of boundary variables [43]. Alternatively, fireflies may be region
specific, and global placement configurations emerge as combinations of regional decisions linked by
auxiliary consistency constraints.

Consider a partition of the bus set into 𝑃 disjoint regions. Agent 𝑝 manages decision variables 𝑢𝑝

corresponding to buses in its region and contributes to global observability through these variables. A
local fitness function 𝐽𝑝 (𝑢𝑝 , 𝑢nb, 𝑝) is defined, where 𝑢nb, 𝑝 denotes an aggregation of neighbor region
decisions that affect observability in region 𝑝. The global objective can be expressed as

𝐽 (𝑢) = [44]
𝑃∑
𝑝=1

𝐽𝑝 (𝑢𝑝 , 𝑢nb, 𝑝) (5.1)

with the understanding that neighbor decisions appear symmetrically in overlapping arguments of the
local functions. The distributed firefly algorithm approximates global minimization of 𝐽 by iteratively
improving local fireflies using information exchanged with neighbors.

Each agent maintains a local population of fireflies. The 𝑖th firefly at agent 𝑝 has a continuous rep-
resentation 𝑦𝑝,𝑖 and a binary projection 𝑢𝑝,𝑖 obtained through the mapping Ψ. Initially, continuous
positions can be drawn from a uniform distribution over a bounded interval for each component, and
binary placements obtained by thresholding. Local observability and redundancy are computed based on
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𝑢𝑝,𝑖 and current estimates of neighbor placements. The local fitness 𝐽𝑝 is then evaluated [45]. Brightness
is assigned as an inverse function of fitness, for example

𝐵𝑝,𝑖 =
1

1 + 𝐽𝑝 (𝑢𝑝,𝑖 , 𝑢nb, 𝑝)
(5.2)

which keeps brightness in a bounded interval and emphasizes low fitness values.
At each iteration, agent 𝑝 receives from each neighbor 𝑞 summary information about its fireflies, such

as the best current placement 𝑢best
𝑞 and its associated brightness. To respect communication bandwidth

limitations, agentsmay exchange only a limited number of fireflies or encode placements in a compressed
format. Based on this information, each local firefly decides whether to move toward a neighbor firefly.
A simple rule is that firefly (𝑝, 𝑖) identifies the brightest firefly among its own population and neighbor
populations and, if this firefly is brighter, moves toward it according to a binary attraction rule [46]. The
continuous update can be written as

𝑦𝑘+1
𝑝,𝑖 = 𝑦𝑘𝑝,𝑖 + 𝛽𝑘𝑝,𝑖 ( 𝑦̃𝑘𝑝,𝑖 − 𝑦𝑘𝑝,𝑖) + 𝜂𝑘𝑝,𝑖 (5.3)

where 𝑦̃𝑘𝑝,𝑖 is the continuous representation of the selected brighter firefly and 𝛽𝑘𝑝,𝑖 is the attractiveness
coefficient determined by the distance between placements. The random term 𝜂𝑘𝑝,𝑖 is drawn from a zero
mean distribution with variance scaled by a parameter that may decrease with 𝑘 to gradually reduce
randomness as the algorithm progresses.

Distance between binary placements is measured using a normalized Hamming distance. If 𝑢𝑝,𝑖 and
𝑢̃𝑝,𝑖 denote the binary projections of the two fireflies, distance can be defined as

𝑑𝑘
𝑝,𝑖 =

1
𝑛𝑝

𝑛𝑝∑
ℓ=1

���𝑢𝑘𝑝,𝑖 (ℓ) − 𝑢̃𝑘𝑝,𝑖 (ℓ)
��� (5.4)

where 𝑛𝑝 is the number of decision variables at agent 𝑝. The attractiveness coefficient is then

𝛽𝑘𝑝,𝑖 = 𝛽0 [47] exp(−𝛾(𝑑𝑘
𝑝,𝑖)2) (5.5)

with positive parameters 𝛽0 and 𝛾 chosen through tuning. A larger value of 𝛾 reduces attraction for
distant placements, encouraging local search around similar configurations, while a smaller value allows
broader exploration.

Once the continuous position is updated, the binary projection is obtained componentwise. For each
component ℓ of 𝑦𝑘+1

𝑝,𝑖 , a transfer function 𝑇 is applied to generate a probability

𝑝𝑘+1
𝑝,𝑖 (ℓ) = 𝑇 (𝑦𝑘+1

𝑝,𝑖 (ℓ)) (5.6)

followed by a Bernoulli trial that sets 𝑢𝑘+1
𝑝,𝑖 (ℓ) to one with probability 𝑝𝑘+1

𝑝,𝑖 (ℓ) and zero otherwise. A
common transfer function is the logistic function [48]

𝑇 (𝑦) = 1
1 + exp(−𝑦) (5.7)

whichmaps real numbers to probabilities in the open unit interval. Threshold basedmappings can also be
used, for example by setting 𝑢𝑘+1

𝑝,𝑖 (ℓ) to one when 𝑇 (𝑦𝑘+1
𝑝,𝑖 (ℓ)) exceeds a chosen threshold. The stochastic

mapping enables the algorithm to escape localminima by flipping bits evenwhen the continuous position
is near a stable point.

Observability constraints introduce coupling across agents because the observability of a bus depends
on sensors in neighboring regions. To handle this coupling without centralized coordination, agents
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approximate global observability using local information and limited neighbor data [49]. For a bound-
ary bus shared by regions 𝑝 and 𝑞, the observability indicator depends on sensors in both regions.
Agents can agree on a simple aggregation rule, such as computing a local coverage index based on their
own placements and those received from neighbors. For example, the coverage index for bus 𝑖 may be
approximated as

𝑟𝑘𝑖 = 𝑢𝑘𝑖 +
𝑛∑
𝑗=1

𝑎𝑖 𝑗 𝑢̂
𝑘
𝑗 (5.8)

where 𝑢̂𝑘𝑗 are the latest known placement decisions at neighbor buses, possibly delayed. Observability
penalties in the fitness function at agent 𝑝 are then computed from these approximate coverage indices
[50]. This approximation introduces inexactness but maintains locality.

To encourage consistency among agents on overlapping variables, one can introduce consensus style
variables that seek agreement on boundary placements. For a boundary bus shared by regions 𝑝 and 𝑞,
agents maintain local copies 𝑢𝑝,𝑖 and 𝑢𝑞,𝑖 and penalize disagreement. A quadratic penalty term can be
added to the fitness function, such as

𝐽con (𝑢) =
∑
(𝑝,𝑞)

∑
𝑖∈B𝑝𝑞

𝜇𝑝𝑞 (𝑢𝑝,𝑖 − 𝑢𝑞,𝑖)2 (5.9)

where B𝑝𝑞 denotes the set of boundary buses between regions and 𝜇𝑝𝑞 are nonnegative penalty param-
eters. Since the variables are binary, the squared difference is equivalent to the absolute difference and
can be linearized. The consensus penalty makes inconsistent placements less attractive and encourages
agents to align their decisions over iterations [51].

Algorithmic parameters such as base attractiveness, decay, and randomness scale play a critical role
in balancing convergence speed and solution quality. A high base attractiveness can lead to rapid con-
vergence but increases the risk of becoming trapped in a local minimum, especially when coupled with
low randomness. A high randomness scale promotes exploration but can slow convergence and produce
highly variable placements. A common strategy is to start with relatively high randomness and grad-
ually reduce it according to a schedule, allowing the algorithm to explore the search space widely at
early iterations and then refine solutions. In a distributed context, different agents may adopt different
parameter schedules depending on their local problem structure and communication degree [52].

The algorithm proceeds iteratively. At each iteration, agents perform local fitness evaluations for
their fireflies based on current placements and neighbor information, update brightness values, and apply
movement rules with respect to brighter fireflies. Neighbor communication occurs either synchronously,
with agents exchanging information at each iteration, or asynchronously, with updates arriving at differ-
ent times. Asynchronous operation may better reflect realistic communication patterns in transmission
networks, where delays and packet losses are possible. Under asynchronous updates, agents use the
most recently received neighbor information, which may be stale, in fitness evaluations and attraction
rules [53]. This leads to a stochastic optimization process whose convergence properties depend on
communication reliability and delay bounds.

6. Simulation Studies and Discussion
To gain insight into the qualitative behavior of the distributed firefly based sensor placement algorithm,
it is helpful to consider its application to standard transmission network models. Such studies typically
involve benchmark systems with varying sizes and topologies, such as small test cases with tens of
buses and larger meshed networks with hundreds of buses. The mathematical model described earlier
is instantiated for each test system by constructing the adjacency matrix from the network topology,
defining installation costs for candidate sensor locations, and specifying observability and redundancy
requirements. Parameters of the firefly algorithm, such as population size, base attractiveness, decay
coefficients, and randomness scales, are selected through preliminary tuning [54].
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In a representative scenario, a medium sized test system can be partitioned into several regions reflect-
ing natural geographic or control area boundaries. Each region is assigned an agent that manages local
placement decisions. The communication graph among agents is defined by region adjacency, with
edges connecting agents whose regions share transmission interfaces. Firefly populations are initialized
independently at each agent, with initial placements drawn from uniform distributions that satisfy basic
feasibility conditions, such as a minimum number of sensors per region [55]. The baseline to which the
distributed algorithm is compared can be a centralized metaheuristic or a deterministic greedy heuristic
that has access to full network information.

The performance of the algorithm can be evaluated along several dimensions. One dimension is
observability quality, measured by the number of buses that remain observable under the obtained
placement, possibly under various contingencies. Another dimension is installation cost, computed from
sensor costs assigned to each bus. A third dimension is redundancy, which can be quantified through
coverage indices and the number of independent measurement paths to each bus [56]. Since the present
discussion is based on analytical reasoning rather than executed computations, the focus is on plausible
behaviors and trends rather than specific numerical outcomes.

In small networks with relatively low redundancy requirements, one expects the distributed firefly
algorithm to find placements that achieve full observability with a number of sensors comparable to
centralized methods. The local nature of interactions is less restrictive when the network diameter is
small and regions are highly interconnected. In such settings, improvements discovered in one region
can propagate rapidly across the network because the communication path lengths between agents are
short. The attraction mechanism encourages convergence toward globally consistent patterns as agents
repeatedly move local fireflies toward brighter neighbor solutions that reflect better trade offs among
cost and observability [57].

As network size and complexity grow, the effect of communication structure becomes more pro-
nounced. When regions are loosely connected and communication paths are longer, information about
superior placements in one region may take more iterations to influence distant regions. The distributed
algorithm may converge to placements that are locally near optimal but globally suboptimal due to
incomplete propagation of information. This effect can be mitigated by increasing the number of iter-
ations, enlarging local populations, or modifying communication policies to occasionally broadcast
summary information beyond immediate neighbors. However, these changes increase communication
and computational overhead, illustrating a trade off between solution quality and resource usage [58].

Redundancy requirements influence both the objective landscape and algorithm behavior. Increas-
ing the redundancy threshold for each bus introduces more constraints and restricts the set of feasible
placements. From a qualitative perspective, this tends to increase the number of sensors required and
can make the search space more rugged, with many local minima corresponding to different ways of
achieving redundancy. The firefly algorithm addresses such ruggedness through random perturbations
and distance based attractiveness, which allow it to explore multiple basins of attraction. In a distributed
setting, each agent may discover distinct local patterns that satisfy redundancy locally [59]. The consen-
sus penalty that encourages agreement on boundary placements helps fuse these patterns into coherent
global configurations, though some agents may need to sacrifice local optimality for global consistency.

The choice of fitness function also affects algorithm behavior. When the objective heavily penal-
izes unobservable buses, the algorithm places strong emphasis on achieving full observability before
significantly reducing cost. In such a regime, early iterations often focus on eliminating observability
violations by installing additional sensors in unobservable areas, possibly at high cost. Once observ-
ability is achieved, subsequent iterations refine placements by relocating sensors to reduce costs while
preserving coverage [60]. If the penalty weights on unobservable buses are moderate, the algorithmmay
accept partial observability in exchange for cost savings, especially in regions with high sensor costs.
The balance between cost and observability is therefore governed by penalty parameters and must be
chosen with care.

Another aspect is robustness to contingencies. One can incorporate simple contingency modeling by
evaluating observability under single sensor failures or line outages for each candidate placement. This
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requires additional computational effort during fitness evaluation but can be approximated by redun-
dancy indices [61]. Placements that provide multiple independent coverage paths for each bus are less
likely to lose observability under single failures. The firefly algorithm naturally tends toward such place-
ments when redundancy is rewarded in the fitness function. In distributed implementations, agents must
approximate contingency effects using local information and neighbor summaries. For instance, an
agent can estimate how much redundancy its sensors provide to neighbor regions based on exchanged
adjacency and placement data and adjust its decisions accordingly.

Convergence behavior of the distributed algorithm is influenced by parameter choices and commu-
nication patterns [62]. High attractiveness and low randomness can lead to rapid alignment of fireflies
but risk premature convergence to local minima. High randomness and low attractiveness allow broader
exploration but slow convergence. A commonly employed strategy is to decrease randomness over itera-
tions while keeping attractiveness relatively constant or adjusting it slowly. In distributed settings, agents
may adopt heterogeneous schedules, with some regions exploringmore aggressively due to higher uncer-
tainty about neighbor behavior, while others exploit known good patterns [63]. Such heterogeneity can
be beneficial, as it prevents all agents from synchronously converging to similar local minima.

The sensitivity of the algorithm to initialization is another consideration. If initial firefly populations
are biased toward particular placement patterns, these biases may persist and influence final solutions,
especially under low randomness and limited communication. Diverse initializations across agents can
alleviate this sensitivity, as different regions explore different parts of the search space. Occasional
exchange of best placements among nonneighboring agents, implemented through sparse long range
communication, can further reduce dependence on initial conditions by introducing global information
into regional decision processes [64].

The computational complexity of the distributed firefly algorithm scales with the number of agents,
the size of local populations, and the complexity of local fitness evaluations. For each agent, the per
iteration cost includes fitness evaluation for all local fireflies and position updates based on selected
neighbor fireflies. Fitness evaluation involves computing coverage and redundancy indices, which can
be implemented using sparse matrix operations due to the sparsity of the adjacency matrix in large
networks. Communication costs scale with the number of neighbor agents and the size of the informa-
tion exchanged per iteration, which can be controlled by limiting the number of fireflies exported and
compressing binary placement vectors.

The qualitative comparison with centralized methods hinges on trade offs rather than absolute per-
formance metrics [65]. Centralized optimization using exact or heuristic methods may achieve lower
installation costs or higher redundancy for the same number of sensors because of full visibility of
the network and unrestricted coordination. However, centralized methods place heavier demands on
communication infrastructure and centralized computing resources andmay present organizational chal-
lenges in multi entity environments. Distributed methods, including the distributed firefly algorithm,
offer a means to approximate global optimization while respecting local autonomy and communication
constraints. The degree to which they approach centralized performance depends on topology, parameter
tuning, and communication policies.

7. Conclusion
Sensor placement for observability enhancement in power transmission networks is a combinatorial
problem shaped by network topology, measurement capabilities, redundancy requirements, and cost
considerations [66]. Linearized models based on coverage and adjacency relations provide tractable
approximations of observability constraints and can be embedded in binary optimization formulations.
These formulations allow clear representation of installation decisions, cost objectives, and redundancy
requirements, though they remain challenging to solve exactly at large scale. Metaheuristic approaches
such as firefly algorithms offer flexible frameworks for exploring the associated discrete search spaces
and can incorporate complex penalty structures and constraints.
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The distributed firefly based framework considered here adapts a population based metaheuristic
to settings where decision making and information are naturally distributed across regions or agents.
By associating agents with network regions and restricting interactions among fireflies according to a
communication graph, the algorithm aligns its structure with physical and organizational characteristics
of transmission systems [67]. Local fitness evaluations based on regional placement decisions, neighbor
information, and approximations of global observability enable agents to adjust sensor layouts without
full knowledge of the entire network. Consensus penalties and coverage approximations help preserve
overall observability and encourage coherent placements across region boundaries.

The mathematical modeling component, including binary placement vectors, adjacency based cov-
erage constraints, redundancy indices, and cost functions, supplies a foundation for fitness evaluation in
the distributed algorithm. Linear algebraic representations facilitate decomposition and sparse compu-
tation. The firefly mechanism, incorporating distance based attractiveness and stochastic perturbations,
provides a means to balance exploitation of promising placements with exploration of alternative con-
figurations [68]. Parameter choices, such as population sizes, attractiveness and decay coefficients,
randomness schedules, and penalty weights, significantly influence convergence properties and require
careful tuning for different network topologies and operational requirements.

From a qualitative perspective, the distributed firefly algorithm can approximate centralized opti-
mization performance under favorable conditions, particularly when networks are not excessively large
and communication among agents is sufficiently connected. As networks become larger and more
heterogeneous, the limitations of local information and finite communication manifest as potential devi-
ations from globally optimal placements. Nonetheless, the approach maintains advantages in terms of
scalability, modularity, and compatibility with multi entity operation. The capacity to adapt sensor lay-
outs over time as network conditions change, leveraging ongoing distributed optimization, provides
flexibility not easily captured by static centralized designs [69].

Future investigations may explore several directions. One direction involves more detailed modeling
of measurement physics and state estimation performance within the fitness function, beyond coverage
based criteria, to connect sensor placement directly to estimation error metrics and dynamic secu-
rity indicators. Another direction concerns formal analysis of convergence properties and performance
bounds for the distributed firefly algorithm under realistic communication constraints and asynchronous
updates. A further avenue is the integration of sensor placement with other planning tasks, such as
protection coordination and communication infrastructure design, in a unified distributed optimization
framework. While such extensions require additional modeling and computational effort, they offer the
possibility of more coordinated operation and planning in modern power transmission systems [70].
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