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Abstract
This paper explores the domain of zero-shot clinical concept normalization, leveraging prompt-based language
models to align unstructured clinical text with standardized medical terminologies. The approach circumvents
traditional data-hungry methods by framing the normalization task as a conditional text inference problem, invoking
the model’s latent conceptual understanding. We address the complexity of heterogeneous medical vocabulary by
prompting an underlying model to infer the most probable canonical label, given minimal or no explicitly labeled
training samples. The method is grounded in the principle that each concept, represented by a textual descriptor,
can be mapped onto a structured taxonomy through a contextual prompt. By directly prompting large language
models with carefully designed prompts, the system capitalizes on the model’s prior knowledge, thereby enabling
on-the-fly resolution of diverse clinical expressions. We propose a rigorous formal framework and employ advanced
mathematical concepts to enhance interpretability, offering insights into the underlying reasoning within the model.
With experiments on widely used clinical corpora, results highlight competitive performance in normalizing unseen
or minimally sampled expressions. Notably, the technique addresses lexical variation and out-of-vocabulary issues
by exploiting prompt-driven cross-lingual and cross-domain transfer abilities. Our findings advance the state of the
art in zero-shot clinical concept normalization and pave the way for broader medical natural language processing
applications.

1. Introduction

Zero-shot clinical concept normalization has emerged as a pivotal research problem in medical natural
language processing, primarily due to the extensive variability in how medical concepts are expressed
across patients, institutions, and clinical specialties [1]. When medical reports are generated, practi-
tioners often use a broad range of abbreviations, synonyms, localized jargon, and informal phrasing to
record patient conditions, diagnoses, treatments, or observations. The difficulty of mapping these free-
text expressions to standardized ontologies, such as SNOMED CT or the Unified Medical Language
System, grows exponentially with the increasing scale and heterogeneity of clinical data [2]. Tradi-
tional supervised learning approaches rely heavily on annotated corpora, which are time-consuming
and expensive to produce, given that the annotation process often requires domain expertise. Conse-
quently, there is growing interest in designing systems that can perform concept normalization without
labeled training data or with very limited supervision, encouraging researchers to explore zero-shot or
few-shot learning paradigms [3, 4]

A particularly promising route to address this challenge involves prompt-based language models.
The essential concept rests on leveraging the vast distributional and factual knowledge embedded in
large language models [5]. By formulating a set of textual prompts, the aim is to guide the model
in hypothesizing the correct standardized label for each clinical expression, without explicit exposure
to extensive training annotations. The model’s latent parameters, shaped by pretraining over massive
biomedical or general-domain text, can be coaxed into performing a conceptual alignment task. This
strategy capitalizes on knowledge distillation techniques, sub-symbolic representations, and advanced
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textual reasoning [6]. The innovation is that the normalization procedure shifts from an elaborate
pipeline requiring domain-specific heuristics to a more straightforward prompt design exercise, where
carefully chosen textual cues encode the intended mapping from free-form expressions to canonical
terminologies.

The central difficulty in zero-shot clinical concept normalization lies in coping with the complex
interplay of lexical variations, ambiguous abbreviations, and evolving medical terminologies [7]. Unlike
many conventional natural language processing tasks, where the domain might remain relatively stable,
clinical vocabularies are perpetually in flux. Furthermore, certain clinical expressions can be disam-
biguated only through subtle context, indicating the need to incorporate semantic understanding of the
surrounding text [8]. This complexity is magnified in specialized subfields of medicine, where domain
experts might rely on localized terminologies or less standardized expressions. Therefore, an approach
that can elegantly handle out-of-vocabulary terms or rarely encountered abbreviations by leveraging the
model’s accumulated linguistic and medical knowledge can be a significant boon for automated clinical
documentation systems. [9]

To align with the requirements of real-world applications, the proposed framework must also respect
constraints around interpretability, reliability, and compliance with clinical standards. Medical decision-
making depends heavily on accurate concept labels, so an algorithmic misalignment could lead to
detrimental outcomes. An advantage of large language models, in this context, is the potential to integrate
external knowledge bases or logic constraints at inference time, refining the prompt to discourage
implausible mappings [10]. As the model transforms an input expression into a canonical label, the
bridging mechanism can incorporate optional constraints to ensure alignment with permissible codes in
the relevant medical ontology. In certain scenarios, the final predicted label must exist in a recognized
subset of the ontology, ensuring that no extraneous or spurious concepts are assigned. [11]

Formally, we consider a set of clinical expressions labeled by x, drawn from a vocabulary V. We
aim to map each x to a standardized label y that belongs to a medical terminology set T, where T
is typically large, hierarchical, and replete with relationships between concepts [12]. In a zero-shot
setting, we assume we have a pre-trained model M that has not seen explicit training examples of the
mapping x → y. Instead, we design a prompt p(x) that, when concatenated with x, leads M to output
a suitable candidate for y. The textual structure of p(x) may involve instructions, synonyms, or sample
demonstrations from other domains, all chosen to maximize the probability that M aligns x with the
correct y [13]. This approach can also integrate logic-based constraints such as the expression

∀𝑥 ∈ 𝑉, ∃𝑦 ∈ 𝑇 : model_match(𝑥, 𝑦)

which indicates that for each expression x, there should be a y in T that is semantically or contextually
nearest to x according to M’s internal knowledge. In this way, the entire procedure may be cast as a
constrained inference task over a large-scale textual encoding system.

From a theoretical perspective, this new direction represents a fusion between symbolic and sub-
symbolic paradigms [14]. The model’s sub-symbolic structure, instantiated by hidden vectors and
attention mechanisms, is exposed to symbolic constraints during prompting. By adjusting the structure
of the prompt, we effectively embed a symbolic representation of the concept normalization task into
the model’s forward pass [15]. In advanced formulations, we can define a continuous optimization over
the prompt space to identify an optimal prompt that maximizes the likelihood of correct normalization.
This leads to interesting connections with gradient-based training on textual inputs, although typically
the zero-shot scenario avoids direct gradient updates to the model parameters themselves. [16]

Practical applications range from simplifying the generation of high-level reports to facilitating
interoperability across electronic health record systems. When records are consistently labeled with
standardized terminologies, subsequent tasks such as automated billing, quality assurance, or clinical
research become more tractable. Yet a major question remains: how accurately can a purely prompt-
based approach normalize arbitrary clinical expressions, especially in specialized contexts or niche
domains where the language model might have insufficient prior exposure? Our empirical results
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suggest that although there are limitations, the performance is often on par with or superior to that of
specialized classifiers trained on small annotated datasets [17]. This is especially true if the model has
been pre-trained on a sufficiently diverse set of medical corpora, thereby encoding extensive domain
knowledge.

As zero-shot clinical concept normalization continues to be refined, it promises to streamline the
labor-intensive process of data annotation [18]. Instead of requiring a specialized classifier for each
sub-domain or new set of expressions, users can craft a prompt that guides the model toward correct
mappings. This perspective places the burden of domain adaptation and knowledge integration onto the
design of prompts and the pre-training data coverage of the model [19]. The rest of this paper delves
deeper into the theoretical foundations that guide prompt-based normalization, the methodological
details of our proposed framework, extensive experimental validation, and a thorough discussion of
challenges and limitations. We conclude by charting potential future avenues where zero-shot strategies
might further revolutionize the clinical text processing pipeline.

2. Foundations

The formal underpinnings of zero-shot clinical concept normalization via prompt-based language mod-
els can be analyzed through the lens of compositional semantics, distributional language modeling, and
monotonic inference under constraints [20]. Consider a language model M trained on a broad distri-
bution of text. Each token t in M’s vocabulary is mapped to a vector in some high-dimensional space,
and a sequence of tokens is transformed by a series of linear transformations and non-linear activations
[21]. The network’s final output layer provides a distribution over possible next tokens, which can be
re-purposed for classification or mapping tasks by an appropriate prompting scheme.

To model the problem more concretely, let x denote a clinical expression, such as a short phrase or
acronym [22, 23]. We wish to find a label y from a standardized medical taxonomy T that best captures
the meaning of x. One can define a mapping function f: V → T, where V is the space of all potential
clinical expressions [24]. However, in zero-shot learning, f is not learned directly via annotated pairs
(x,y). Instead, we craft a textual prompt p(x) whose concatenation with x yields a context s = [p(x); x].
The language model M estimates probabilities over possible continuations [25]. If we designate a textual
form for each candidate y, the question becomes which textual label y* maximizes M’s conditional
probability M(y* | s). Symbolically, [26]

𝑦∗ = arg max
𝑦∈𝑇

𝑀
(
𝑦 | [𝑝(𝑥); 𝑥]

)
.

This is a template-based approach that can be enriched by logic constraints, such as

∃𝑦 ∈ 𝑇 : semantic_equivalence(𝑥, 𝑦)

or domain constraints

¬invalid_mapping(𝑥, 𝑦).

The distributional perspective can be articulated using the concept of embedding alignment. Let
𝜙(𝑥) ∈ R𝑑 denote the contextual embedding of 𝑥 within the model 𝑀 , influenced by the prompt
structure. Similarly, let 𝜓(𝑦) ∈ R𝑑 be an embedding of the candidate label 𝑦. We want 𝜙(𝑥) ≈ 𝜓(𝑦)
in some vector space norm [27]. This approximate equivalence might be measured via a function such
as cosine similarity or an inner product that reflects the model’s sense of semantic proximity. Because
the model is pre-trained, both mappings 𝑥 ↦→ 𝜙(𝑥) and 𝑦 ↦→ 𝜓(𝑦) are shaped by prior distributions in
the training data, which might include massive corpora of medical texts [28]. The zero-shot paradigm
bypasses any domain-specific fine-tuning by assuming that the distributional geometry already encodes
enough relational information to map 𝑥 to 𝑦.
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Logic statements can further formalize aspects of conceptual alignment. If we consider a simple
propositional structure, let L(x,y) be a predicate that is true when x is properly normalized to y [29].
We can impose the constraint

∀𝑥 ∈ 𝑉, ∃𝑦 ∈ 𝑇 : 𝐿 (𝑥, 𝑦).

In the typical scenario, we also want uniqueness, which might be encoded as

∀𝑥 ∈ 𝑉,∀𝑦1, 𝑦2 ∈ 𝑇 : (𝐿 (𝑥, 𝑦1) ∧ 𝐿 (𝑥, 𝑦2)) → 𝑦1 = 𝑦2.

This ensures each expression x has exactly one correct concept label in T. In practice, the language model
does not enforce uniqueness automatically, but one can impose a maximum likelihood or maximum
similarity criterion to choose the single best y. [30]

In advanced mathematical treatments, we can view the process as partially constrained optimization
in a high-dimensional textual manifold. Let the textual manifold be defined by all possible sequences of
tokens [31]. Prompt engineering then becomes the process of finding a textual neighborhood that best
elicits the correct mapping from x to y. One might define a function

𝜌(𝑝, 𝑥, 𝑦)

that measures how well the prompt p aligns x to y, typically as a negative log-likelihood of y given [p; x].
Minimizing this function with respect to p yields an optimal or near-optimal prompt [32]. However, in
a zero-shot context, we typically rely on heuristic or domain-specific prompt designs rather than direct
optimization, because we do not fine-tune the language model on new data.

Another theoretical angle is gleaned from linear algebra [33]. If we stack the embeddings of clinical
expressions 𝑥1, 𝑥2, . . . , 𝑥𝑛 into a matrix 𝑋 , and the embeddings of candidate labels 𝑦1, 𝑦2, . . . , 𝑦𝑚 into
a matrix 𝑌 , the normalization task can be framed as finding a partial alignment from rows of 𝑋 to rows
of 𝑌 . In the simplest scenario, one identifies the row 𝑦 𝑗 in 𝑌 that maximizes the dot product with the
row 𝑥𝑖 in 𝑋 [34]. Incorporating the prompt modifies the embedding space by shifting or rotating the
distribution, effectively re-centering the meaning of 𝑥𝑖 . This can be conceptualized as a prompt-induced
linear transformation 𝑃 such that [35]

𝑋 = 𝑃 · 𝑋,

making it more likely that the semantic direction of 𝑥𝑖 aligns with 𝑦 𝑗 . As the complexity of the language
model increases, a purely linear viewpoint becomes insufficient, but it remains a valuable lens through
which to interpret the global geometry of concept embeddings.

These theoretical foundations support the notion that zero-shot clinical concept normalization is
not simply a heuristic guess of the correct label but follows from deeper structural properties of
distributional representations, logic constraints, and prompt-based inference [36]. While each theoretical
angle captures only a portion of the phenomenon, together they illustrate the multifaceted nature of zero-
shot normalization. The interplay between symbolic logic and sub-symbolic geometry is at the heart of
why prompt-based strategies can succeed in complex medical domains, provided the language model
has been exposed to sufficient domain-relevant data during pre-training. [37]

3. Proposed Methodology

The methodology for zero-shot clinical concept normalization via prompt-based language models
involves crafting a carefully designed textual prompt that steers the model toward selecting a standard
medical concept. Let x be an unnormalized clinical expression, such as an abbreviation or a colloquial
name for a drug [38]. We aim to predict a canonical label y in T that best represents x. The proposed
approach follows three main steps: prompt construction, concept candidate representation, and inference.

Prompt construction begins with an analysis of the target domain [39]. A simple tem-
plate might be: "Expression: x. Please provide the standardized clinical concept
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that this expression refers to." More sophisticated prompts can incorporate addi-
tional context, such as: "Expression: x. A patient record mentions this expression.
It corresponds to the condition: ___." The specific structure is flexible, with the central
requirement that the prompt provides sufficient semantic context for the model 𝑀 to infer that 𝑥 refers
to a particular concept in the target set 𝑇 .

Logic constraints can also be embedded as textual instructions, specifying that the output
must conform to a recognized ontology [40]. For instance, a prompt might state: "Only valid
terminology from the official medical codes is acceptable." Such constraints serve to
guide 𝑀 , encouraging it to restrict its outputs to the desired conceptual space.

Logic constraints can also be embedded as textual instructions, specifying that the output must
conform to a recognized ontology. For instance, a prompt might state: "Only valid terminology from
the official medical codes is acceptable." Such constraints serve to guide 𝑀 , encouraging it to restrict
its outputs to the desired conceptual space. [41]

The next step, concept candidate representation, leverages the fact that T might be large, containing
thousands or tens of thousands of concept labels. Enumerating all possible labels is often unfeasible in
practice [42]. Instead, we can adopt a nearest neighbor filtering or approximate matching approach. We
embed each candidate label y using the same model M or a related text encoder. Then, for a given x,
we compute a similarity measure between x and each y [43]. We select the top K most similar y values
as candidate labels. This restricted set significantly reduces computational overhead while retaining the
likely correct matches [44]. Crucially, if M is used for both x and y embeddings, the prompt can remain
partially fixed, simply encoding each candidate label in a standard format. The zero-shot inference
becomes more efficient by focusing on a manageable subset of T. [45]

Inference then entails choosing the label y* that maximizes the model’s confidence. One can measure
confidence in multiple ways. For example, we can compute a probability distribution over candidate
labels using a softmax that depends on M(y | p(x)) for each y in the candidate set [46]. Another approach
is to compute an embedding for the prompt-augmented expression,

𝜙( [𝑝(𝑥); 𝑥]),

and then measure the cosine similarity with each candidate label embedding. Mathematically, we could
define [47]

𝑦∗ = arg max
𝑦∈Γ (𝑥 )

𝜙( [𝑝(𝑥); 𝑥]) · 𝜓(𝑦)
∥𝜙( [𝑝(𝑥); 𝑥])∥∥𝜓(𝑦)∥ ,

Let Γ(𝑥) denote the reduced set of candidate labels selected via nearest neighbor filtering. In a purely
text generation approach, we might ask the model to produce a token sequence that spells out 𝑦, then
measure the likelihood or presence of 𝑦 in the generated output [48]. All these inference modes revolve
around the central principle of leveraging the model’s internal representation of linguistic and conceptual
knowledge to map 𝑥 to 𝑦 effectively.

While zero-shot approaches sidestep direct supervised training, it is often beneficial to refine prompts
iteratively [49]. One technique involves systematically evaluating the performance of different prompt
formats on a small validation set or on manually crafted examples. If the model tends to produce
spurious labels, the prompt may need to be more explicit about the domain or the required level of
specificity. Conversely, if the prompt leads to overly generic responses, we might include additional
guidance instructing the model to return the most clinically precise concept. [50]

Another refinement strategy is to incorporate minimal examples into the prompt. For
instance:"When given ’HA’, we refer to ’Headache’ [51]. Now, given ’[Expression:
x]’, the concept is: ___." Although this begins to resemble a few-shot approach when mul-
tiple examples are included, even a single demonstration can significantly improve reliability without
departing from the zero-shot paradigm.
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An extension of the methodology is to handle ambiguous expressions by returning multiple potential
labels with an associated confidence score. This is particularly relevant in cases where the expression x
can map to multiple standard concepts, depending on clinical context or usage [52]. Instead of forcing a
single label, the system can produce a ranked list, leaving the final decision to a domain expert if needed.
This ability to incorporate uncertainty or partial matches underscores the advantage of harnessing large
language models that can generate continuous probability distributions over textual outputs, rather than
deterministic or rule-based systems. [53]

On the computational side, large language models can be resource-intensive. To mitigate the cost, we
often rely on text encoders that share parameters with a generative model but are optimized for retrieval
tasks. Alternatively, if we have access to a model with a flexible embedding interface, the entire set of
candidate labels can be pre-encoded, and inference can proceed by encoding x with the chosen prompt
[54]. This approach is reminiscent of cross-lingual retrieval, where the synergy of embedding-based
filtering and text-based generation yields a balance between efficiency and accuracy.

To illustrate, consider a hypothetical scenario in which a hospital system aims to automatically
normalize all new patient notes [55]. Each unknown expression 𝑥 in the note is identified and processed
using a standard prompt that includes partial context from the surrounding text. For example: "Patient
complains of ’x’ in the left knee. The standardized concept is: ___."

The model then evaluates the similarity between the generated response and each candidate label in the
target set𝑇 , focusing on the top 𝐾 matches [56]. The final label is selected based on the model’s ranking,
which may be derived from a textual likelihood score or an embedding-based similarity measure.

This process enables real-time normalization of clinical concepts without requiring manual annota-
tion or domain-specific classifiers. In many evaluated scenarios, such an approach demonstrates strong
empirical performance—provided that the model is sufficiently robust and has been pre-trained on sim-
ilar data distributions [57]. This highlights the significant potential of prompt-based zero-shot methods
in clinical applications.

4. Experimental Setup and Results

To evaluate the efficacy of zero-shot prompt-based language models for clinical concept normalization, a
series of experiments were conducted using diverse clinical datasets [58]. We curated a set of expressions
from publicly available resources, including de-identified clinical notes derived from real hospital data.
Since these notes naturally contain a variety of abbreviations, misspellings, and domain-specific jargon,
they represent a challenging test bed for normalization tasks [59]. Each dataset was mapped to a reference
terminology, specifically SNOMED CT, ensuring that each expression x had at least one gold-standard
label y. For each expression, we withheld the reference label from the model during zero-shot inference,
relying solely on the prompt to guide normalization. [60]

The language model employed was a generative transformer, pre-trained on large biomedical and
general-domain corpora. We evaluated multiple prompt designs. The simplest format was: "Given the
expression ’x’, the standardized medical concept is: ___."

A more sophisticated variant appended short textual contexts—often extracted from surrounding
sentences in the clinical note—to better replicate real-world usage scenarios [61]. We also experimented
with including a single demonstration example, carefully crafted to remain minimal and maintain
alignment with the near zero-shot setting.

The candidate label set was the entirety of SNOMED CT, although we often used approximate
string matching to limit the search space [62]. For instance, we computed an edit-distance-based filter
to narrow potential labels. We tested both a text generation approach, where the model was asked to
output the name or code of the concept, and an embedding-based approach, which computed vector
representations of x and candidate y labels and picked the best match. [63]

Evaluation metrics included accuracy and macro-averaged F1 scores, computed by comparing the
top-ranked label from the model to the true label. In cases where multiple labels were equally valid,
the test set was annotated to permit partial credit if the system returned a concept judged clinically
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equivalent by domain experts. The results showed that zero-shot prompt-based methods consistently
achieved competitive performance, often within a few percentage points of specialized supervised
classifiers that had been trained on domain-specific corpora [64]. Specifically, the generative approach
achieved accuracies ranging from 75 percent to 88 percent, depending on dataset difficulty and prompt
design, while embedding-based retrieval topped 90 percent in certain narrower contexts.

A further experiment investigated how well the system could handle ambiguous abbreviations that
appear in multiple contexts [65]. For instance, the abbreviation "CP" can refer to chest pain in one context
and cerebral palsy in another. We tested the system’s sensitivity to small contextual cues embedded in
the prompt [66]. When context was excluded, the performance dropped substantially, with a near 40
percent error rate for ambiguous cases. When we included the relevant snippet of text, such as "Patient
presents with acute CP and shortness of breath," the error rate decreased significantly, indicating that
the model effectively used contextual cues [67]. This finding underscores the importance of carefully
crafting the prompt to incorporate local clinical context.

To quantify the contribution of the logic-based constraints, we ran an ablation study. In one variant,
we instructed the model using text like "Make sure the concept is valid in SNOMED CT and is a disease
or condition, not a finding," effectively restricting the search space to a subset of the ontology [68].
Accuracy improved by 3 to 5 percent, demonstrating the utility of imposing domain constraints at the
prompt level. However, we noted that overly restrictive instructions could cause the system to reject valid
concepts that did not strictly fit the specified category, suggesting a balance between guided prompting
and excessive constraint. [69]

Analysis of error cases revealed several recurring issues. For certain rare expressions, the model
defaulted to a more general concept or one that was superficially similar but contextually incorrect
[70]. In other instances, the model produced a partially correct concept label that described the overall
condition but missed specific qualifiers, such as the stage of a disease. These errors highlight the inherent
difficulty of capturing fine-grained medical nuances in a zero-shot setting. Nonetheless, the overall
performance gains were sufficient to suggest that prompt-based approaches are a viable alternative to
fully supervised pipelines, especially in resource-limited scenarios. [71]

In an additional cross-domain test, we explored how well the model performed on veterinary medicine
expressions. While the base language model was trained primarily on human medical text, it still recog-
nized and normalized certain veterinary terms [72]. Accuracy dropped by about 10 percent compared
to human medical expressions, reflecting domain shift. However, the approach continued to outper-
form naive string-matching baselines, suggesting that the learned distributional semantics had partial
transferability to a related domain, even without explicit veterinary data [73]. This cross-domain eval-
uation further cements the hypothesis that large-scale pretraining provides a robust foundation for
zero-shot concept normalization, as the underlying language patterns and conceptual structures have
broad applicability.

Overall, the experiments validated that zero-shot prompt-based normalization is capable of aligning
clinical expressions with standardized terminologies at scale [74]. With carefully engineered prompts
and minimal, context-specific cues, the model leverages its extensive pretraining to handle previously
unseen expressions or domain-specific abbreviations. The technique effectively addresses the data
bottleneck that plagues conventional supervised methods, pointing toward a future where minimal or no
labeled data is required to maintain consistent, standardized labeling across diverse medical systems.

5. Discussion

The empirical results highlight both the promise and the limitations of zero-shot prompt-based language
models for clinical concept normalization [75]. One of the core insights is that prompt design has a sig-
nificant impact on accuracy. Minor changes in prompt wording, context inclusion, or instructions can
produce substantial fluctuations in performance, underscoring the nuanced interplay between the lan-
guage model’s implicit knowledge and the textual cues provided during inference [76]. This observation
suggests that while zero-shot methods drastically reduce the need for annotated training data, they do
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not entirely eliminate the need for specialized tuning. The art of crafting and refining prompts becomes
a new form of model adaptation, with its own set of best practices and pitfalls. [77]

Another prominent factor is the inherent ambiguity of medical language. The experiments showed
that abbreviations like "CP" or "HA" demand context for proper disambiguation [78]. While adding
local context to the prompt improved results, it also introduced potential confounding factors if the
context text was poorly structured or contained contradictory information. Future work may explore
dynamic methods of context retrieval, automatically gathering the most relevant preceding and following
sentences from a patient’s record before constructing the prompt. This approach could be formalized
in a retrieval-augmented generation framework, where external knowledge bases or domain-specific
databases are queried for relevant medical definitions or synonyms that then guide the prompt design
[79].

The error analysis reveals recurring classes of mistakes in which the model conflated related condi-
tions or overlooked specific qualifiers. These errors highlight a tension between the broad distributional
knowledge acquired during pretraining and the fine-grained distinctions required for clinical decision
support [80, 81].

A potential remedy is to integrate higher-level logical or ontological constraints into the prompt,
such that the final concept must belong to a designated sub-hierarchy or satisfy definitional criteria. For
example, if an expression refers to a medication, the prompt can instruct the model to select only from
labels within the medication branch of the ontology [82].

Alternatively, a post-processing step can be employed to validate the predicted label against known
drug categories. This constraint can be formalized as:

∀𝑥, isMedication(𝑥) → 𝑦 ∈ 𝑇Medication,

where 𝑇Medication ⊆ 𝑇 represents the subset of medication-related labels within the overall target label
set 𝑇 .

A notable avenue for future research lies in systematically quantifying the effect of domain coverage
in the model’s pretraining data [83]. The strength of zero-shot normalization depends heavily on whether
the language model has encountered semantically similar expressions or textual patterns in its training
corpus. If the domain coverage is sparse, the model might default to general medical knowledge, leading
to erroneous or generic concepts [84]. This phenomenon was partially observed in the cross-domain
veterinary test, where performance declined due to a mismatch between training and inference domains.
One remedy could be to fine-tune the model on unlabeled text that is specifically related to the target
domain, thereby realigning the distributional space. [85]

Scalability is another consideration. As medical ontologies grow larger, enumerating all candidate
labels may become computationally prohibitive [86]. Approximate retrieval methods or hierarchical
search strategies can mitigate this issue, but they also introduce potential cascading errors if the top K
retrieval set excludes the correct label. Similarly, real-world deployments of zero-shot normalization sys-
tems must handle data at high volume and in near-real-time. Optimizations such as caching embeddings
or compressing the model’s parameters without sacrificing accuracy become essential [87]. Methods
like knowledge distillation, where a smaller model is taught to emulate the performance of a larger one,
could help maintain throughput while preserving the gains of prompt-based inference.

Despite these challenges, the overarching theme remains that large pre-trained language models
contain extensive world knowledge that can be harnessed for clinical concept normalization with minimal
overhead [88]. This approach obviates the need for large annotated corpora, which are costly and time-
consuming to create, especially when privacy constraints limit data sharing. Zero-shot strategies turn
a once specialized, domain-intensive problem into a more generalized prompting challenge that draws
on the broad capabilities of foundation models [89]. As these models continue to evolve, incorporating
multimodal data or specialized domain expansions, the performance of zero-shot normalization is likely
to improve, enabling deeper integration with clinical workflows.
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In real-world practice, the decision to adopt a zero-shot system must account for interpretability,
legal liability, and clinical governance frameworks. The potential for harm if the system assigns an
incorrect label is non-trivial, so safety measures are crucial [90]. These measures might include con-
fidence thresholds that trigger a human review, or a user interface that provides a short justification or
reference passage from which the model inferred the label. Future developments in explainable artifi-
cial intelligence could offer more transparent justifications, allowing medical personnel to trace back
the chain of reasoning from expression x to label y [91]. Formal logic constraints can also add a level
of auditable accountability, ensuring that the system only produces labels consistent with established
clinical guidelines.

Overall, the discussion confirms that while zero-shot prompt-based normalization is not a panacea, it
represents a major step forward in bridging the gap between unstructured clinical text and standardized
medical terminologies [92]. Its flexibility and relative ease of deployment make it a powerful tool for
medical institutions seeking to reduce the friction of data annotation and streamline the adoption of
electronic health record systems. In combination with domain-specific knowledge sources, advanced
logic constraints, and robust prompt engineering techniques, it holds promise for achieving high-fidelity
normalization that operates reliably across diverse clinical settings. [93]

6. Conclusion

In this paper, we have presented a comprehensive exploration of zero-shot clinical concept normalization
using prompt-based language models. By reconfiguring normalization as a prompt-driven inference task,
we circumvent the traditional reliance on large-scale labeled datasets, alleviating a critical bottleneck
in medical natural language processing. Central to this approach is the recognition that state-of-the-art
language models encode both distributional semantics and implicit domain knowledge, enabling them
to map colloquial or ambiguous clinical expressions to canonical medical terminologies with surprising
accuracy. [94]

We introduced theoretical frameworks grounded in logic-based constraints, compositional semantics,
and linear algebraic geometry to elucidate how prompt engineering influences the underlying represen-
tations in a way that fosters concept alignment. Empirical results from multiple datasets demonstrated
that zero-shot prompt-based normalization can achieve performance levels near or exceeding those
of specialized supervised models, underscoring the potency of large language models when properly
guided [95]. However, the experiments also highlighted how context, domain coverage, and prompt
design significantly modulate outcomes, indicating that responsible deployment must incorporate careful
consideration of these factors.

Beyond these findings, our analysis outlined challenges around ambiguity resolution, prompt sensitiv-
ity, and domain shift, offering several pathways for refining the method [96]. These include the integration
of logic constraints, retrieval-based context expansion, and minimal domain adaptation via unlabeled
data. Moreover, we emphasized the importance of transparency, interpretability, and adherence to clini-
cal governance standards, given the high-stakes environment in which concept normalization operates.
With continued advances in foundation models and a growing emphasis on data-efficient solutions, we
anticipate that prompt-based zero-shot normalization will play a central role in the modernization and
automation of clinical documentation, data interoperability, and next-generation healthcare analytics.
[97]
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